みんなの「教えて(疑問・質問)」にみんなで「答える」Q&Aコミュニティ

こんにちはゲストさん。会員登録(無料)して質問・回答してみよう!

解決済みの質問

サイン コサイン タンジェントについて

今数学でわからないところがあります。単元はサインコサイン タンジェント ってやつです、説明を見ても理解できませんでした。
分かる方がいればぜひ簡単に教えてください。お願いします。

投稿日時 - 2002-06-15 23:46:42

QNo.292925

暇なときに回答ください

質問者が選んだベストアンサー

一言で言えば、「角度」によって表現されているものを「長さ」による表現に
置き換えるための道具です。

投稿日時 - 2002-06-17 14:20:33

お礼

分かりやすい返答ありがとう。

投稿日時 - 2002-06-17 17:56:49

ANo.4

このQ&Aは役に立ちましたか?

39人が「このQ&Aが役に立った」と投票しています

回答(4)

ANo.3

教科書で理解しにくかったのであれば、できるだけ違う説明をしてみます。
「簡単に」教えることにはなっていないと思いますが(^^;)

●突然ですが、座標を使って点の位置を表す方法を考えてみましょう。

xy座標平面上に適当に点Pを打ったとします。
分かりやすいように第1象限(右上)に打ってみましょう。
この点Pを、消しゴムでキレイに消してしまっても
また同じ位置に打てるように、
位置を記録しておく方法を考えます。
そのための方法としてまず思いつくのが「座標」です。
Pからx軸に下ろした垂線の足をA、
Pからy軸に下ろした垂線の足をBとします。
そして、AとBの目盛さえ記録しておけば、
点Pの位置は再現できるわけです。
Aの目盛をx座標と呼びますが、
これはOAの長さのことであり、実はBPの長さに等しいですね。
同様にBの目盛(y座標)はOB(=AP)の長さであることを確認しましょう。

世界地図で最もよく使われる図法の一つである
「メルカトル図法」では、
横の「緯線(いせん)」と縦の「経線(けいせん)」とが
直交して等間隔に引かれています。
「北緯36度、東経135度」といった言い回しは、
上で述べた「座標」の考え方で
地球上の一点を定めていると考えることができます。

●では、点の位置を記録する方法は他にはないのでしょうか。

ブッソウ(物騒)なたとえですが、
原点Oから点Pにミサイルを撃ち込むとします。
このとき、ミサイルにどんな情報をインプットすれば
点Pに命中するでしょうか。

まず、方向が間違っていたらお話になりませんから、
全方位360度の中から正しい方向を指定する必要があります。
ここでは、「まっすぐ右」、すなわちx軸の正の方向に
分度器の0度の線を当てて角度を測ることにしましょう。
たとえば「20度の方向」といえばちょっと右上の方向であり、
「90度の方向」であれば真上、「270度」なら真下になります。

さて、同じ「20度の方向」をとってみても、
原点からの距離によって無数の点があります。
そこで、方向以外にも「距離」を指定してやる必要があり、
これを間違えたら弾が届かなかったり通り過ぎたりしてしまいます。
逆に、距離(たとえば5)だけを指定しても、そのような点は
「原点を中心とした半径5の円」上に無数にありますから、情報は不充分です。

●というわけで、ミサイルに必要な情報は「方向」と「距離」の2つの値です。
このような点の表しかたを「極座標」といいます。
これに対し、先に述べた「ふつうの」座標を「直交座標」といいます。

●実際に手を動かしてみましょう。
紙(できれば方眼紙)と定規と分度器を用意してください。
まず、直交するx軸とy軸を大きく描きます。
この座標平面上に、「55度の方向、原点から10cm」の点Pを
できるだけ正確に打ってください。

●ここで、この点Pを直交座標で書き直すにはどうしたら良いでしょうか。

Pからx軸、y軸に垂線PA、PBを下ろして長さを測れば良いですね。
正確に垂線を引くのは意外に難しいのですが、長さはいくらになりましたか。
横5.7cm、縦8.2cmくらいになれば正解です。
すなわち、
極座標で(55度, 10cm) = 直交座標で(5.7cm, 8.2cm)
という変換を行なったことになります。

この変換をすべての極座標の組合せに対して行なって一覧表を作れば、
今後はいちいち図を描かなくても直交座標を求めることができます。
しかし、「すべての組合せ」といっても無限にあります。
ここでよく考えてみると、原点から10cmの点の直交座標は、
原点から1cmの点の直交座標を、
x座標もy座標も単純に10倍すれば求まりますね。
したがって、本当にすべての組合せを扱う必要はなく、
「原点から1cmの、いろいろな方向の点の直交座標」さえ表を作っておけば、
あとは2cmなら2倍、5cmなら5倍してやればいいだけです。
図で描けば、「原点を中心とする半径1の円」上の
いろいろな点のx座標とy座標を考えていることになります。
ちなみにこの円を「単位円」と呼びます。

●さて、ようやくコサイン・サインの話になりますが、
直交座標を求めるにあたり新しい記号を導入して、
例えば「単位円上で55度の方向にある点」の
x座標を「cos 55°」、
y座標を「sin 55°」と書くことに決められました。

その実際の値は誰かが求めてくれていて、
教科書の巻末などに「数表」としてまとめられていると思います。
数表の55度のところの値はどうなっているか調べてみましょう。
cos 55° = 0.5736、sin 55° = 0.8192
などとなっているはずです。
これはあくまで近似値で、実際には無限に小数が続きます。
これを10倍すれば、先に作図した点Pの座標(5.736, 8.192)が求まり、
実際に測った値と一致しますね。

●教科書では歴史的な観点から
「直角三角形の辺の比」としてコサイン・サイン・タンジェントが紹介されます。
したがって私の説明を読んだcapppuさんが理解を深めてくれるか、
それとも逆に混乱してしまうか、それは分かりません(^^;)
さまざまな説明の一つとして参考にしてください。

投稿日時 - 2002-06-16 10:25:12

お礼

返答ありがとうございます、ちょっと難しいけどがんばってみます^^;

投稿日時 - 2002-06-17 17:56:04

ANo.2

下記URLを参照してください。

参考URL:http://www.dt.takuma-ct.ac.jp/~sawada/math/danwa1html/node7.html

投稿日時 - 2002-06-16 01:05:01

お礼

返答ありがとうございます、そのHPは参考になりました。感謝です。

投稿日時 - 2002-06-17 17:55:02

ANo.1

まず、サイン、コサイン、タンジェントの定義をしっかり理解しましょう。図を書くことを面倒がらなければ、ちゃんと分かると思いますよ。

投稿日時 - 2002-06-16 00:52:27

お礼

ありがたい言葉ありがとうございます。がんばります。

投稿日時 - 2002-06-17 17:54:17

あなたにオススメの質問